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ContributionsMotivation
• Quantifying individual muscle forces has the potential to revolutionize 

biomechanical study, but no noninvasive methods exist to measure them in 
real time.

• Muscle deformation is a promising signal from which to infer individual 
muscle forces from a single ultrasound scan: when muscles undergo the 
cross-bridge cycle to stretch the tendon and impart force to the skeleton, 
they undergo a shape change.

• In addition to the force we desire to measure, deformation also reflects 
passive shape changes due to kinematic configuration and contact dynamics. 
Thus, to measure force via deformation, models are needed that 
account for (and discriminate between) active and passive deformation.

• We formulate statistical shape models 
(SSMs) to discriminate between active and 
passive biceps brachii deformation within 
a single ultrasound cross section using the 
OpenArm 2.0 data set [1].

• Preliminary results indicate that active 
deformation may best be quantified by 
changes in overall cross section size while 
passive deformation may best be 
quantified by measures of shape.

Deformation data were 
analyzed from the 
OpenArm 2.0 data set [1], 
which consists of 3D 
segmented ultrasound 
scans of the biceps 
brachii and humerus:

• from 11 subjects;
• at 4 elbow angles;
• under 5 different 

loading conditions at 
each angle.

Data from a single 
exemplar subject (Sub1) 
were analyzed in this initial 
study.

Data Set
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Data Processing & Scan Selection
Scans at all conditions were aligned to a consistent humerus position via a combination of 
automated processes and manual alignment to identified landmarks.

The cross section with the most linear relative change across conditions (i.e., most consistent 
signal, averaged across angle conditions) was selected for analysis. This was found to be at 45% of 
the length of the humerus, measured distal to proximal (i.e., elbow to shoulder). 

• Preliminary results support the feasibility of SSM as a tool to identify active and passive 
muscle deformation signals, indicating that SSM-based deformation models, once fitted to 
individual bodies and muscles, could be used to more accurately describe internal muscle 
forces without the optimization-based techniques relied on by current musculoskeletal 
modeling frameworks [3] [4].

• Future work aims quantify and validate our preliminary insights in additional subjects and 
muscles, to ultimately build personalized real-time models of muscle force output and 
ultrasound-based control schemes for assistive robots based on active muscle deformation.

Active deformation results in a more global size change. This 
type of deformation may best be quantified by a measure of 
scale such as cross-sectional area.

Passive deformation results in more localized shape changes. 
The difference in cross-sectional area between the two contours is 
extremely small, suggesting that changes in shape, such as 
eccentricity, may be useful in quantifying this type of 
deformation. 

On each examined cross section, a 
modified Procrustes analysis (where 
only the translational and rotational 
transformations were used) [2] was used 
to remove non-shape-associated variation 
while retaining size variations.

Principal Component Analysis (PCA) was 
applied separately to scans varying only in 
force and only in kinematic configuration.

A statistical shape model (SSM) [2] was built 
for each group to reveal shape features 
linked to active and passive deformation.
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90° PCA reveals that the underlying 
dimensionality of muscle cross 
section deformation is low, 
supporting the computational 
feasibility of using deformation 
signals in real-time modeling and 
control applications.

95% reconstruction is possible with 
as few as 3 principal components.
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