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Motivation & Aims

- Robot-assisted rehabilitation is a promising tool for upper-limb motor
recovery, but its efficacy is limited by insufficient insight into users’
diverse patterns of neuromuscular engagement, inhibiting our ability
to assess and improve motor capabilities.

Motor rehabilitation platform [1]
from which muscle activation data
were collected for engagement
analysis. Users exert forces and
torques on load cell (a) through the
attached handle, which are then
mapped to x-y coordinates of on-
screen avatar (b) to allow users to
follow red target ball (c) through
different trajectories, while surface
electromyography (sEMG) electrodes
(d) placed on key muscles of the arm
(e) record muscle activations. The

« To enable such insights, we have developed a rehabilitation robot
platform to collect detailed neuromuscular engagement data (i.e.,
muscle activations, as measured via surface electromyography, or sEMG)
during performance of 6D isometric trajectory tracking exercises [1].

« With the goal of quantifying the differences between healthy and
pathological motor.strategies, we perform syner.gy-based. analyses of system currently supports isometric
users’' motor behavior during completion of a variety of trajectory rehabilitation tasks at arbitrary poses
tracking tasks on this platform, toward building robust, generalizable — robot (f) remains static — but will

Surface EMG electrode placements: anterior deltoid (AD), middle deltoid (MD), posterior be expan ded in the future to su pport

models of neuromuscular engagement that can ultimately guide robot deltoid (PD), and biceps brachii (BB), grounded at the acromion (G1); triceps brachi long - i o obot controllers
interventions fO r effe ctive re h 3 b i | itation . Zleeicz,a;};);’ t()cr;c;ilv/orad/al/s (BR), wrist flexors (FL), and wrist extensors (EX), grounded at the

Methods & Results
Synergy Extraction

| welghmatrix candidate synergy
Surface EMG data were SEMG time ”
series 1) = S H decompositions
analyzed from the . .
OpenRobotRehab 1.0 synergies : flnal synergy decompos:t:on
data set [1], which n=1 < : . :
comprises time-series processed SEMG data
muscle activation, end VAF
BR WMWW .
effector force, and game | analysis
performance data from X T T e T : (synergy
13 healthy and 2 post- B W A N e Y A NMF . . . decomposition
stroke participants as FL (synergy - SRR | S y o selection)
they performed various TR . " I AL extraction) | n=4 e . = | N |
isometric trajectory D - — - — The flnal synergy decomp95|t|on was selected via the
tracking tasks in e - following literature-established [3] procedure:
multiple poses. AD 1. For each participant and activity, variance accounted for (VAF) [4]
PD was computed for each candidate decomposition (1-8 synergies).
BB B -] . B | . o 2. The final decomposition was selected as the lowest dimensionality at
I KK N N R B R which the average VAF across participants was > 0.90, each
participant 4, activity 8 (spline 2) n=g .m - -1 B - b L participant’s VAF was > 0.85, and the increase in VAF if the next-
7 w [ | w wo | w | o I o ) i
= 1 -0 I- s . highest number of synergies had been selected was < 0.03.
S - - - - This procedure provided an optimal low-dimensional
o . . . representation of motor behavior, and consistently
For eac.:h participant and .trac.klng task, synergies were extracted from sEMG data using Non- selected decompositions of n=3-5 synergies, in agreement
Negative Matrix Factorization (NMF) [2] with different assumed numbers of synergies (n=1-8). with patterns reported in established literature [5].
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Limitations & Future Work

Our preliminary analyses indicate that Individuals, whether impaired or unimpaired, This work was undertaken as part of the Utah HRELab's

may not be easily categorized into distinct groups based on their synergy OpenRobotRehab project. Check out other related projects here
decomposition alone. To determine whether patterns can be observed with more at RehabWeek!

granular analysis, we are planning the following study extensions:

Ongoing Extensions & Context

« An Extensible Platform for Measurement and Modification of

« fine-grained titioni f ts withi task priort d ition; . . cre
ine-grained partitioning of movements within a task prior to synergy decomposition Muscle Engagement During Upper-Limb Robot-Facilitated

 investigation of NMF consistency across hyperparameters, and of additional decomposition Rehabilitation (ICORR paper 277)
methods;
. implementation of improved processing pipelines for streamlined model iteration; - Enhancing 6-DoF Rehabilitation Task Guidance with

. development of improved metrics for synergy comparison; Augmented Reality (late-breaking abstract)

« collection of additional, non-isometric data sets; and
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