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• Robot-assisted rehabilitation is a promising tool for upper-limb motor 
recovery, but its efficacy is limited by insufficient insight into users’ 
diverse patterns of neuromuscular engagement, inhibiting our ability 
to assess and improve motor capabilities.

• To enable such insights, we have developed a rehabilitation robot 
platform to collect detailed neuromuscular engagement data (i.e., 
muscle activations, as measured via surface electromyography, or sEMG) 
during performance of 6D isometric trajectory tracking exercises [1].

• With the goal of quantifying the differences between healthy and 
pathological motor strategies, we perform synergy-based analyses of 
users’ motor behavior during completion of a variety of trajectory 
tracking tasks on this platform, toward building robust, generalizable 
models of neuromuscular engagement that can ultimately guide robot 
interventions for effective rehabilitation.

Surface EMG data were 
analyzed from the 
OpenRobotRehab 1.0 
data set [1], which 
comprises time-series 
muscle activation, end 
effector force, and game 
performance data from 
13 healthy and 2 post-
stroke participants as 
they performed various 
isometric trajectory 
tracking tasks in 
multiple poses.

Toward a Muscle-Synergy-Based Model 
of Post-Stroke Pathology in Robot-
Assisted Rehabilitation

For each participant and tracking task, synergies were extracted from sEMG data using Non-
Negative Matrix Factorization (NMF) [2] with different assumed numbers of synergies (n=1–8).
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This work was undertaken as part of the Utah HRELab’s 
OpenRobotRehab project. Check out other related projects here 
at RehabWeek!
• An Extensible Platform for Measurement and Modification of 

Muscle Engagement During Upper-Limb Robot-Facilitated 
Rehabilitation (ICORR paper 277)

• Enhancing 6-DoF Rehabilitation Task Guidance with 
Augmented Reality (late-breaking abstract)

The final synergy decomposition was selected via the 
following literature-established [3] procedure:
1. For each participant and activity, variance accounted for (VAF) [4] 

was computed for each candidate decomposition (1–8 synergies).

2. The final decomposition was selected as the lowest dimensionality at 
which the average VAF across participants was > 0.90, each 
participant’s VAF was > 0.85, and the increase in VAF if the next-
highest number of synergies had been selected was < 0.03.

This procedure provided an optimal low-dimensional 
representation of motor behavior, and consistently 
selected decompositions of n=3–5 synergies, in agreement 
with patterns reported in established literature [5].

To compare motor behaviors across healthy and 
post-stroke participants, we defined modified 
mean squared error (MSE) measure

which describes the error when participant    ’s sEMG 
data is constructed using participant    ’s synergy 
matrix for a given activity.
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No consistent differences in 
reconstruction error were 
observed across healthy and 
impaired participants, and no 
participant groups exhibiting similar 
motor strategies were obvious.
We also analyzed the cosine 
similarity between different 
participants’ synergies and similarly 
observed no reliable differences 
between impaired and 
unimpaired participants.

Motor rehabilitation platform [1] 
from which muscle activation data 
were collected for engagement 
analysis. Users exert forces and 
torques on load cell (a) through the 
attached handle, which are then 
mapped to x–y coordinates of on-
screen avatar (b) to allow users to 
follow red target ball (c) through 
different trajectories, while surface 
electromyography (sEMG) electrodes 
(d) placed on key muscles of the arm 
(e) record muscle activations. The 
system currently supports isometric 
rehabilitation tasks at arbitrary poses 
— robot (f) remains static — but will 
be expanded in the future to support 
a variety of robot controllers. 

Surface EMG electrode placements: anterior deltoid (AD), middle deltoid (MD), posterior 
deltoid (PD), and biceps brachii (BB), grounded at the acromion (G1); triceps brachii (long 
head, TR), brachioradialis (BR), wrist flexors (FL), and wrist extensors (EX), grounded at the 
olecranon (G2).

Comparison Across Participants

Limitations & Future Work Ongoing Extensions & Context
Our preliminary analyses indicate that Individuals, whether impaired or unimpaired, 
may not be easily categorized into distinct groups based on their synergy 
decomposition alone. To determine whether patterns can be observed with more 
granular analysis, we are planning the following study extensions:
• fine-grained partitioning of movements within a task prior to synergy decomposition;

• investigation of NMF consistency across hyperparameters, and of additional decomposition 
methods;

• implementation of improved processing pipelines for streamlined model iteration;

• development of improved metrics for synergy comparison;

• collection of additional, non-isometric data sets; and

• incorporation of neuromechanical modeling techniques [6] to directly relate synergistic 
activations to hand forces, rather than the specified (possibly poorly completed) trajectory 
tracking task.

We ultimately aim to leverage these models of motor behavior to inform the design 
of robotic controllers that impel users away from pathological motor behaviors 
and promote the adoption of healthy motor strategies.
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